Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 588
Filtrar
1.
Cancer Gene Ther ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480975

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most common human malignancies worldwide and is associated with high morbidity and mortality. Current treatment options are limited, highlighting the need for development of novel effective agents. Here, a high-throughput drug screening (HTS) was performed using ESCC cell lines in both two- and three-dimensional culture systems to screen compounds that have anti-ESCC activity. Our screen identified romidepsin, a histone deactylase inhibitor, as a potential anti-ESCC agent. Romidepsin treatment decreased cell viability, induced apoptosis and cell cycle arrest in ESCC cell lines, and these findings were confirmed in ESCC cell line-derived xenografted (CDX) mouse models. Mechanically, romidepsin induced transcriptional upregulation of DNA damage-inducible transcript 4 (DDIT4) gene by histone hyperacetylation at its promoter region, leading to the inhibition of mammalian target of rapamycin complex 1 (mTORC1) pathway. Furthermore, romidepsin exhibited better efficacy and safety compared to the conventional therapeutic drugs in ESCC patient-derived xenografted (PDX) mouse models. These data indicate that romidepsin may be a novel option for anti-ESCC therapy.

2.
J Transl Med ; 22(1): 89, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254195

RESUMO

BACKGROUND: Various clinical similarities are present in ischemic (ICM) and idiopathic dilated cardiomyopathy (IDCM), leading to ambiguity on some occasions. Previous studies have reported that intestinal microbiota appeared dysbiosis in ICM, whether implicating in the IDCM remains unclear. The aim of this study was to assess the alterations in intestinal microbiota and fecal metabolites in ICM and IDCM. METHODS: ICM (n = 20), IDCM (n = 22), and healthy controls (HC, n = 20) were enrolled in this study. Stool samples were collected for 16S rRNA gene sequencing and gas chromatography-mass spectrometry (GC-MS) analysis. RESULTS: Both ICM and IDCM exhibited reduced alpha diversity and altered microbial community structure compared to HC. At the genus level, nine taxa including Blautia, [Ruminococcus]_torques_group, Christensenellaceae_R-7_group, UCG-002, Corynebacterium, Oceanobacillus, Gracilibacillus, Klebsiella and Citrobacter was specific to ICM, whereas one taxa Alistipes uniquely altered in IDCM. Likewise, these changes were accompanied by significant metabolic differences. Further differential analysis displayed that 18 and 14 specific metabolites uniquely changed in ICM and IDCM, respectively. The heatmap was generated to display the association between genera and metabolites. Receiver operating characteristic curve (ROC) analysis confirmed the predictive value of the distinct microbial-metabolite features in disease status. The results showed that microbial (area under curve, AUC = 0.95) and metabolic signatures (AUC = 0.84) were effective in discriminating ICM from HC. Based on the specific microbial and metabolic features, the patients with IDCM could be separated from HC with an AUC of 0.80 and 0.87, respectively. Furthermore, the gut microbial genus (AUC = 0.88) and metabolite model (AUC = 0.89) were comparable in predicting IDCM from ICM. Especially, the combination of fecal microbial-metabolic features improved the ability to differentiate IDCM from ICM with an AUC of 0.96. CONCLUSION: Our findings highlighted the alterations of gut microbiota and metabolites in different types of cardiomyopathies, providing insights into the pathophysiological mechanisms of myocardial diseases. Moreover, multi-omics analysis of fecal samples holds promise as a non-invasive tool for distinguishing disease status.


Assuntos
Cardiomiopatia Dilatada , Microbioma Gastrointestinal , Humanos , RNA Ribossômico 16S/genética , Metaboloma , Disbiose
3.
J Hypertens ; 42(3): 460-470, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38009301

RESUMO

OBJECTIVE: Hypertension is linked to gut dysbiosis. Here, the impact of the angiotensin receptor antagonist irbesartan on the gut microbiota of spontaneously hypertensive rats (SHR) were investigated. In addition, we assessed their contribution to its antihypertensive effect. METHODS: Eight-week-old Wistar-Kyoto (WKY) rats and SHR were administered irbesartan for 8 weeks. Fecal microbiota transplantation (FMT) was performed from SHR treated with irbesartan or untreated SHR to recipient untreated SHR. The preventive effect of Lactobacillus on hypertension in SHR was evaluated. Blood pressure (BP) was calculated using a tail-sleeve sphygmomanometer. To better assess the composition of the gut microbiota, the V3-V4 region of the 16S rRNA gene was amplified while short-chain fatty acids (SCFAs) in feces were tested by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). RESULTS: Irbesartan restored gut dysbiosis, increased the abundance of Lactobacillus , and improved anti-inflammatory ability, antioxidative ability, intestinal integrity, and intestinal inflammation in SHR. The microbiota in SHR-treated irbesartan could reduce BP and improve antioxidative ability and gut integrity in SHR. Lactobacillus johnsonii ( L. johnsonii ) and Lactobacillus reuteri ( L. reuteri ) reduced BP, restored gut dysbiosis and improved anti-inflammatory ability, antioxidative ability, intestinal integrity in SHR. Most notably, irbesartan, L. johnsonii , and L. reuteri can significantly increase SCFA content in SHR feces. CONCLUSION: The current study demonstrated that irbesartan treatment ameliorated gut dysbiosis in SHR. Irbesartan induced alterations in gut microbiota, with increased prevalence of Lactobacillus .


Assuntos
Anti-Hipertensivos , Hipertensão , Ratos , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Irbesartana/uso terapêutico , Ratos Endogâmicos SHR , Lactobacillus/genética , Cromatografia Líquida , Disbiose , RNA Ribossômico 16S , Ratos Endogâmicos WKY , Espectrometria de Massas em Tandem , Pressão Sanguínea , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
4.
Comput Struct Biotechnol J ; 23: 87-95, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38116074

RESUMO

Despite extensive research on the gut microbiome of healthy individuals from a single country, there are still a limited number of population-level comparative studies. Moreover, the sequencing approach used in most related studies involves 16 S ribosomal RNA (rRNA) sequencing with a limited resolution, which cannot provide detailed functional profiles. In the present study, we applied a combined analysis approach to analyze whole metagenomic shotgun sequencing data from 2035 healthy adult samples from six countries across four continents. Analysis of core species revealed that 13 species were present in more than 90 % of all investigated individuals, the majority of which produced short-chain fatty acids (SCFA)-producing bacteria. Our analysis revealed consistently significant differences in gut microbial species and pathways between Western and non-Western countries, such as Escherichia coli and the relation of MetaCyc pathways to the TCA cycle. Specific changes in microbial species and pathways are potentially related to lifestyle and diet. Furthermore, we identified several noteworthy microbial species and pathways that exhibit distinct characteristics specific to China. Interestingly, we observed that China (CHN) was more similar to the United States (USA) and United Kingdom (GBR) in terms of the taxonomic and functional composition of the gut microbiome than India (IND) and Madagascar (MDG), which were more similar to the China (CHN) diet. The current study identified consistent microbial features associated with population and geography, which will inspire further clinical translations that consider paying attention to differences in microbiota backgrounds and confounding factors.

5.
Biomedicines ; 11(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38137354

RESUMO

BACKGROUND: Lung cancer is still the most lethal malignancy in the world, according to the report of Cancer Statistics in 2021. Platinum-based chemotherapy combined with immunotherapy is the first-line treatment in lung cancer patients. However, the 5-year survival rate is always affected by the adverse reactions and drug resistance caused by platinum-based chemotherapy. DNA damage and repair system is one of the important mechanisms that can affect the response to chemotherapy and clinical outcomes in lung cancer patients. OBJECTIVE: The objective of this study is to find the relationship between the polymorphisms of DNA repair genes with the prognosis of platinum-based chemotherapy in lung cancer patients. PATIENTS AND METHODS: We performed genotyping in 17 single nucleotide polymorphisms (SNPs) of Excision Repair Cross-Complementation group (ERCC) genes and X-ray Repair Cross-Complementing (XRCC) genes of 345 lung cancer patients via Sequenom MassARRAY. We used Cox proportional hazard models, state, and plink to analyze the associations between SNPs and the prognosis of lung cancer patients. RESULTS: We found that the ERCC5 rs873601 was associated with the overall survival time in lung cancer patients treated with platinum-based chemotherapy (p = 0.031). There were some polymorphisms that were related to the prognosis in specific subgroups of lung cancer. Rs873601 showed a great influence on the prognosis of patients more than 55 years, Small Cell Lung Cancer (SCLC), and smoking patients. Rs2444933 was associated with prognosis in age less than 55 years, SCLC, metastasis, and stage III/IV/ED patients. Rs3740051 played an important role in the prognosis of SCLC and metastasis patients. Rs1869641 was involved in the prognosis of SCLC patients. Rs1051685 was related to the prognosis in non-metastasis patients. CONCLUSION: The ERCC5 rs873601 (G>A) was a valuable biomarker for predicting the prognosis in lung cancer patients treated with platinum-based chemotherapy.

6.
Medicine (Baltimore) ; 102(50): e36583, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38115290

RESUMO

The potential value of epigenetic DNA methylation in early cancer screening has been demonstrated. Therefore, in this study, we performed QMS-PCR and quantitative reverse transcription PCR on the genes RASSF1A, H4C6, SEPT9, GSTP1, PAX1, SHOX2, and SOX2, which are common in epithelial cancers. We found hypermethylation in RASSF1A, H4C6 and SEPT9. The mRNA expressions of RASSF1A, H4C6 and SEPT9 in tumor group were significantly different from those in the inflammatory group and healthy group (P < .05). Receiver operating characteristic (ROC) analysis showed that the area under the curve (AUC) of RASSF1A, H4C6 and SEPT9 genes were 0.831, 0.856 and 0.767, respectively. The areas under the AUC curve of SEPT9 + H4C6, SEPT9 + RASSF1A and H4C6 + RASSF1A are 0.946, 0.912 and 0.851, respectively. The diagnostic ability of dual gene combination is better than that of single gene combination, among which SEPT9 and H4C6 combination has the best diagnostic effect. In conclusion, our findings suggest that H4C6, RASSF1A, and SEPT9 methylation occur more frequently in nasopharyngeal carcinoma, and their detection in nasopharyngeal swabs may be a minimally invasive tool for diagnosis of nasopharyngeal carcinoma.


Assuntos
Neoplasias Nasofaríngeas , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Metilação de DNA , Detecção Precoce de Câncer , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Nasofaringe/patologia , Histonas/metabolismo
7.
Signal Transduct Target Ther ; 8(1): 386, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37806986

RESUMO

Individual variability in drug response (IVDR) can be a major cause of adverse drug reactions (ADRs) and prolonged therapy, resulting in a substantial health and economic burden. Despite extensive research in pharmacogenomics regarding the impact of individual genetic background on pharmacokinetics (PK) and pharmacodynamics (PD), genetic diversity explains only a limited proportion of IVDR. The role of gut microbiota, also known as the second genome, and its metabolites in modulating therapeutic outcomes in human diseases have been highlighted by recent studies. Consequently, the burgeoning field of pharmacomicrobiomics aims to explore the correlation between microbiota variation and IVDR or ADRs. This review presents an up-to-date overview of the intricate interactions between gut microbiota and classical therapeutic agents for human systemic diseases, including cancer, cardiovascular diseases (CVDs), endocrine diseases, and others. We summarise how microbiota, directly and indirectly, modify the absorption, distribution, metabolism, and excretion (ADME) of drugs. Conversely, drugs can also modulate the composition and function of gut microbiota, leading to changes in microbial metabolism and immune response. We also discuss the practical challenges, strategies, and opportunities in this field, emphasizing the critical need to develop an innovative approach to multi-omics, integrate various data types, including human and microbiota genomic data, as well as translate lab data into clinical practice. To sum up, pharmacomicrobiomics represents a promising avenue to address IVDR and improve patient outcomes, and further research in this field is imperative to unlock its full potential for precision medicine.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Microbioma Gastrointestinal , Microbiota , Humanos , Medicina de Precisão/métodos , Microbiota/genética , Microbioma Gastrointestinal/genética , Farmacogenética
8.
Medicine (Baltimore) ; 102(36): e34671, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682175

RESUMO

Research has demonstrated that obesity is an important risk factor for cancer progression. Orlistat is a lipase inhibitor with promising therapeutic effects on obesity. In addition to being regarded as a slimming drug, a growing number of studies in recent years have suggested that orlistat has anti-tumor activities, while the underlying mechanism is still not well elucidated. This paper reviewed recent pharmacological effects and mechanisms of orlistat against tumors and found that orlistat can target cancer cells through activation or suppression of multiple signaling pathways. It can induce tumor cells apoptosis or death, interfere with tumor cells' cycles controlling, suppress fatty acid synthase activity, increase ferroptosis, inhibit tumor angiogenesis, and improve tumor cells glycolytic. Thus, this review may shed new light on anti-tumor mechanism and drug repurposing of orlistat, and anti-tumor drug development.


Assuntos
Apoptose , Obesidade , Humanos , Orlistate/uso terapêutico , Obesidade/complicações , Obesidade/tratamento farmacológico , Reposicionamento de Medicamentos , Glicólise
9.
Pharmaceutics ; 15(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37631299

RESUMO

The pharmacokinetic variability of nifedipine widely observed in the clinic cannot be fully explained by pharmacogenomics. As a new factor affecting drug metabolism, how the gut microbiota affects the pharmacokinetics of nifedipine needs to be explored. Spontaneously hypertensive rats (SHRs) have been commonly used in hypertension-related research and served as the experimental groups; Wistar rats were used as control groups. In this study, the bioavailability of nifedipine decreased by 18.62% (p < 0.05) in the SHRs compared with the Wistar rats. Changes in microbiota were associated with the difference in pharmacokinetics. The relative abundance of Bacteroides dorei was negatively correlated with AUC0-t (r = -0.881, p = 0.004) and Cmax (r = -0.714, p = 0.047). Analysis of serum bile acid (BA) profiles indicated that glycoursodeoxycholic acid (GUDCA) and glycochenodeoxycholic acid (GCDCA) were significantly increased in the SHRs. Compared with the Wistar rats, the expressions of CYP3A1 and PXR were upregulated and the enzyme activity of CYP3A1 increased in the SHRs. Spearman's rank correlation revealed that Bacteroides stercoris was negatively correlated with GUDCA (r = -0.7126, p = 0.0264) and GCDCA (r = -0.6878, p = 0.0339). Moreover, GUDCA was negatively correlated with Cmax (r = -0.556, p = 0.025). In primary rat hepatocytes, GUDCA could induce the expressions of PXR target genes CYP3A1 and Mdr1a. Furthermore, antibiotic treatments in SHRs verified the impact of microbiota on the pharmacokinetics of nifedipine. Generally, gut microbiota affects the pharmacokinetics of nifedipine through microbial biotransformation or by regulating the enzyme activity of CYP3A1.

10.
Nutrients ; 15(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37571344

RESUMO

In this study, we collected data from the National Health and Nutrition Examination Survey (NHANES) for the years 2011-2014. Multiple linear regression and logistic regression were used to analyse the association between nonfood pro- or prebiotic use and cognitive function among elderly Americans. To estimate the potential unobserved results, propensity score matching (PSM) was used to analyse the causal effect. Nonfood pro- or prebiotic use was analysed through the Dietary Supplement Use 30-Day Study. Cognitive function was evaluated by the Digit Symbol Substitution Test (DSST), the Animal Fluency Test (AFT), the Consortium to Establish a Registry for Alzheimer's Disease (CERAD), and a composite Z-score calculated by summing the Z-scores of three tests. Male participants who used nonfood pro- or prebiotics tended to have higher comprehensive cognitive function (sum.z) with a ß-coefficient of 0.64 (95% CI: 0.08-1.19). Probiotics or prebiotics may be a protective factor against cognitive impairment in males, with an odds ratio of 0.08 (95% CI: 0.02-0.29). Furthermore, the average treatment effect for the treated (ATT) with nonfood pro- or prebiotics (0.555) on sum.z in males was statistically significant (p < 0.05). Our research revealed that nonfood pre- or probiotic use was an effective method to improve cognitive function in elderly men from the USA.


Assuntos
Disfunção Cognitiva , Probióticos , Masculino , Estados Unidos/epidemiologia , Humanos , Inquéritos Nutricionais , Prebióticos , Cognição
11.
Cell Rep Med ; 4(8): 101143, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37557178

RESUMO

Effective triage of high-risk human papillomavirus (hrHPV)+ women is warranted to avoid unnecessary referral and overtreatment. Molecular triage tests have recently begun to impact cervical intraepithelial neoplasia grade 3 (CIN3) or cervical cancer (CC), termed CIN3+, detection. We find that zinc finger protein 671 methylation (ZNF671m) test has superior performance for CIN3+ detection in all single molecular triage tests, including HPV16/18 genotyping, paired box gene 1 methylation (PAX1m), and ZNF671m, in the training set. Using ZNF671m test instead of Thinprep cytologic test (TCT) as a single triage strategy or as a combined triage strategy with HPV16/18 genotyping has achieved comparable sensitivity but higher specificity for CIN3+ detection among 391 hrHPV+ women in the validation set. Little attention has been paid to the women with hrHPV- status but detected CIN3+. We find that the CIN3+ risk after a negative result could be reduced further by triage using ZNF671m in hrHPV- patients.


Assuntos
Displasia do Colo do Útero , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/genética , Papillomavirus Humano 16/genética , Metilação de DNA/genética , Papillomavirus Humano 18/genética , Displasia do Colo do Útero/diagnóstico , Proteínas Supressoras de Tumor/genética
12.
Genes Dis ; 10(3): 771-785, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37396555

RESUMO

Vascular remodeling and angiogenesis are two key processes in the maintenance of vascular homeostasis and involved in a wide array of vascular pathologies. Following these processes, extracellular matrix (ECM) provides the mechanical foundation for vascular walls. Lysyl oxidase (LOX), the key matrix-modifying enzyme, has been demonstrated to significantly affect structural abnormality and dysfunction in the blood vessels. The role of LOX in vascular remodeling and angiogenesis has always been the subject in the current medical research. Therefore, we presently make a summarization of the biosynthesis of LOX and the mechanisms involved in vascular remodeling and angiogenesis, as well as the role of LOX in diseases associated with vascular abnormalities and the therapeutic potential via targeting LOX. In particular, we give a proposal that LOX likely reshapes matrisome-associated genes expressions in the regulation of vascular remodeling and angiogenesis, which serves as a mechanistic insight into the critical role of LOX in these two aspects. Additionally, LOX has also dual effects on the vascular dysfunction, namely, inhibition of LOX for improving hypertension, restenosis and malignant tumor while activation of LOX for curing arterial aneurysm and dissection. LOX-targeted therapy may provide a promising therapeutic strategy for the treatment of various vascular pathologies associated with vascular remodeling and angiogenesis.

13.
Front Plant Sci ; 14: 1146490, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434607

RESUMO

The phenotyping of Pinus massoniana seedlings is essential for breeding, vegetation protection, resource investigation, and so on. Few reports regarding estimating phenotypic parameters accurately in the seeding stage of Pinus massoniana plants using 3D point clouds exist. In this study, seedlings with heights of approximately 15-30 cm were taken as the research object, and an improved approach was proposed to automatically calculate five key parameters. The key procedure of our proposed method includes point cloud preprocessing, stem and leaf segmentation, and morphological trait extraction steps. In the skeletonization step, the cloud points were sliced in vertical and horizontal directions, gray value clustering was performed, the centroid of the slice was regarded as the skeleton point, and the alternative skeleton point of the main stem was determined by the DAG single source shortest path algorithm. Then, the skeleton points of the canopy in the alternative skeleton point were removed, and the skeleton point of the main stem was obtained. Last, the main stem skeleton point after linear interpolation was restored, while stem and leaf segmentation was achieved. Because of the leaf morphological characteristics of Pinus massoniana, its leaves are large and dense. Even using a high-precision industrial digital readout, it is impossible to obtain a 3D model of Pinus massoniana leaves. In this study, an improved algorithm based on density and projection is proposed to estimate the relevant parameters of Pinus massoniana leaves. Finally, five important phenotypic parameters, namely plant height, stem diameter, main stem length, regional leaf length, and total leaf number, are obtained from the skeleton and the point cloud after separation and reconstruction. The experimental results showed that there was a high correlation between the actual value from manual measurement and the predicted value from the algorithm output. The accuracies of the main stem diameter, main stem length, and leaf length were 93.5%, 95.7%, and 83.8%, respectively, which meet the requirements of real applications.

14.
iScience ; 26(7): 107130, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37456847

RESUMO

Hydrochlorothiazide (HCTZ) is reported to impair glucose tolerance and may induce new onset of diabetes, but the pharmacomicrobiomics of the adverse effect for HCTZ remains unknown. Mice-fed HCTZ exhibited insulin resistance and impaired glucose tolerance. By using FMT and antibiotic cocktail models, we found that HCTZ-induced metabolic disorder was mediated by commensal microbiota. HCTZ consumption disturbed the structure of the intestinal microbiota, causing abnormal elevation of Gram-negative Enterobacteriaceae and lipopolysaccharide (LPS) then leading to intestinal barrier dysfunction. Additionally, HCTZ activated TLR4 signaling and induced macrophage polarization and inflammation in the liver. Furthermore, HCTZ-induced macrophage polarization and metabolic disorder were abrogated by blocking TLR4 signaling. HCTZ consumption caused a significant increase in Gram-negative Enterobacteriaceae, which elevated the levels of LPS, thereby activating LPS/TLR4 pathway, promoting inflammation and macrophage polarization, and resulting in metabolic disorders. These findings revealed that the gut microbiome is the key medium underlying HCTZ-induced metabolic disorder.

15.
NPJ Biofilms Microbiomes ; 9(1): 51, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488134

RESUMO

Vitamin B12 (VB12) deficiency, which may lead to hematologic and neurologic symptoms, has been associated with metformin use, but the underlying mechanism is unclear. Here we report the B. ovatus as an effective VB12 catcher which was enriched in the type 2 diabetes patients suffered from VB12 deficiency after 3 to 6 months of metformin treatment. Colonization of B. ovatus increased the plasma levels of methylmalonic acid and homocysteine in high-fat diet (HFD)-fed mice treated with metformin, and compromised the efficacy of metformin against the HFD-induced metabolic disorders. Mechanistically, metformin increased the intracellular accumulation of VB12 in B. ovatus via btuB upregulation and promoted ATP production for energy-dependent translocation of VB12 transporters at the inner membrane, leading to an enhanced colonization of B. ovatus to compete for VB12 with hosts and subsequently an aggravated VB12 deficiency in the host. Our findings illustrate a previously unappreciated mechanism of metformin leads to host VB12 deficiency by acting directly on gut bacteria to increase their VB12 uptake and consumption, and suggest that inter-host-microbe competition for nutrients may broadly impact human health and drug safety.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Deficiência de Vitamina B 12 , Humanos , Animais , Camundongos , Vitamina B 12 , Homocisteína
16.
Pharmacol Res ; 193: 106804, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37244386

RESUMO

Herbal organic compounds (HOCs) are bioactive natural products from medicinal plants and some traditional Chinese medicines (TCMs). Recently, ingestion of a few HOCs with low bioavailability has been associated with alterations in gut microbiota, but the extent of this phenomenon remains unclear. Here, we systematically screened 481 HOCs against 47 representative gut bacterial strains in vitro and found that almost one-third of the HOCs exhibited unique anticommensal activity. Quinones showed a potent anticommensal activity, while saturated fatty acids exhibited stronger inhibition of the Lactobacillus genus. Flavonoids, phenylpropanoids, terpenoids, triterpenoids, alkaloids and phenols displayed weaker anticommensal activity, but steroids, saccharides and glycosides had hardly any effect on strain growth. Notably, S-configuration HOCs demonstrated stronger anticommensal activity than R-configuration HOCs. The strict screening conditions ensured high accuracy (95%) through benchmarking validation. Additionally, the effects of HOCs on human fecal microbiota profiling were positively correlated with their anticommensal activity against bacterial strains. Molecular and chemical features such as AATS3i and XLogP3 were correlated with the anticommensal activity of the HOCs in the random forest classifier. Finally, we validated that curcumin, a polyhydric phenol with anticommensal activity, improved insulin resistance in HFD mice by modulating the composition and metabolic function of gut microbiota. Our results systematically mapped the profile of HOCs directly affecting human gut bacterial strains, offering a resource for future research on HOC-microbiota interaction, and broadening our understanding of natural product utilization through gut microbiota modulation.


Assuntos
Alcaloides , Plantas Medicinais , Humanos , Camundongos , Animais , Bactérias , Terpenos , Flavonoides/farmacologia , Fenóis
17.
Front Oncol ; 13: 1010132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824133

RESUMO

Cervical cancer (CC) remains one of the leading causes of cancer-related deaths worldwide. However, cervical cancer is preceded by the pre-malignant cervical intraepithelial neoplasia (CIN) that can last for up to 20 years before becoming malignant. Therefore, early screening is the key to prevent the progression of cervical lesions into invasive cervical cancer and decrease the incidence. The genes, down-regulated and hypermethylated in cancers, may provide potential drug targets for cervical cancer. In our current study, using the datasets from Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases, we found that endothelin 3 (EDN3) was downregulated and hypermethylated in cervical squamous cell carcinoma (CSCC). The further analysis in GSE63514 (n=128) dataset and in our samples (n=221) found that the expression of EDN3 was decreased with the degree of cervical lesions. Pyrosequencing was performed to evaluate 4 CpG sites of the EDN3 promoter region in our samples (n=469). The data indicated that the methylation level of EDN3 was increased with the degree of cervical lesions. EDN3 silencing mediated by methylation can be blocked by 5-Azacytidine (5-Aza), a DNA methyltransferase 1 (DNMT1) inhibitor, treatment in cervical cancer cell lines. Ethynyldeoxyuridine (EdU) assay, would-healing assay, clone formation assay and transwell assay were conducted to investigate the biological function of EDN3 in cervical cancer cell lines. The results of these experiments confirmed that overexpression of EDN3 could inhibit the proliferation, clone formation, migration and invasion of cervical cancer cells. EDN3 may provide potential biomarker and therapeutic target for CSCC.

18.
Nutrients ; 15(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36678126

RESUMO

Early intervention in rheumatoid arthritis (RA) is critical for optimal treatment, but initiation of pharmacotherapy to prevent damage remains unsatisfactory currently. Manipulation of the gut microbiome and microbial metabolites can be effective in protecting against RA. Thus, probiotics can be utilized to explore new strategies for preventing joint damage. The aim of this study was to explore the metabolites and mechanisms by which Bifidobacterium pseudocatenulatum affects RA. Based on 16S rRNA sequencing and UPLC-MS/MS assays, we focused on bile acid (BA) metabolism. In a collagen-induced arthritis (CIA) mouse model, B. pseudocatenulatum prevented joint damage by protecting the intestinal barrier and reshaped gut microbial composition, thereby elevating bile salt hydrolase (BSH) enzyme activity and increasing the levels of unconjugated secondary BAs to suppress aberrant T-helper 1/17-type immune responses; however, these benefits were eliminated by the Takeda G protein-coupled receptor 5 (TGR5) antagonist SBI-115. The results suggested that a single bacterium, B. pseudocatenulatum, can prevent RA, indicating that prophylactic administration of probiotics may be an effective therapy.


Assuntos
Artrite Reumatoide , Bifidobacterium pseudocatenulatum , Camundongos , Animais , RNA Ribossômico 16S/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Artrite Reumatoide/prevenção & controle , Ácidos e Sais Biliares
19.
Drug Metab Dispos ; 51(4): 509-520, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36623881

RESUMO

The metabolism of exogenous substances is affected by the gut microbiota, and the relationship between them has become a hot topic. However, the mechanisms by which the microbiota regulates drug metabolism have not been clearly defined. This study characterizes the expression profiles of host drug-processing genes (DPGs) in antibiotics-treated rats by using an unbias quantitative RNA-sequencing method and investigates the effects of antibiotics-induced depletion of rat microbiota on the pharmacokinetic behaviors of cytochrome P450s (CYPs) probe drugs, and bile acids metabolism by ultra-performance liquid chromatography-tandem mass spectrometry. Our results show that antibiotics treatments altered the mRNA expressions of 112 DPGs in the liver and jejunum of rats. The mRNA levels of CYP2A1, CYP2C11, CYP2C13, CYP2D, CYP2E1, and CYP3A of CYP family members were significantly downregulated in antibiotics-treated rats. Furthermore, antibiotics treatments also resulted in a significant decrease in the protein expressions and enzyme activities of CYP3A1 and CYP2E1 in rat liver. Pharmacokinetic results showed that, except for tolbutamide, antibiotics treatments significantly altered the pharmacokinetic behaviors of phenacetin, omeprazole, metoprolol, chlorzoxazone, and midazolam. In conclusion, the presence of stable, complex, and diverse gut microbiota plays a significant role in regulating the expression of host DPGs, which could contribute to some individual differences in pharmacokinetics. SIGNIFICANCE STATEMENT: This study investigated how the depletion of rat microbiota by antibiotics treatments influences the expression profiles of host DPGs and the pharmacokinetic behaviors of CYPs probe drugs. Combined with previous studies in germ-free mice, this study will improve the understanding of the role of gut microbiota in drug metabolism and contribute to the understanding of individual differences in the pharmacokinetics of some drugs.


Assuntos
Citocromo P-450 CYP2E1 , Microbiota , Ratos , Animais , Camundongos , Citocromo P-450 CYP2E1/metabolismo , Antibacterianos , Ratos Sprague-Dawley , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , RNA Mensageiro/metabolismo
20.
Int J Biochem Cell Biol ; 154: 106344, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503048

RESUMO

BACKGROUND: Gefitinib is the first-line treatment for non-small cell lung cancer (NSCLC) harboring EGFR sensitive mutation. However, acquired resistance significantly limits its therapeutic efficacy. CircSETD3 has been reported to promote gefitinib resistance in NSCLC cells, however, its underlying mechanisms have not been fully clarified. METHODS: The expression of circSETD3 were detected in NSCLC patients who received gefitinib as first-line treatment, including 20 gefitinib-sensitive patients and 20 acquired gefitinib-resistant patients. Cell viability were examined by CCK8 assay. The mRNA and protein levels were detected by qRT-PCR and western blot. Using RNA pull-down assay followed by mass spectrometry to identified proteins that interact with circSETD3. The interaction between circSETD3 and fragile X-related protein-1 (FXR1) were further validated by RNA immunoprecipitation (RIP) and pull-down analysis. Fuorescence in situ hybridization (FISH) and immunofluorescence (IF) assays was used for the identification of sub-location of circSETD3 and FXR1 in cells. The effect of circSETD3 overexpression and knockdown on NSCLC tumor growth to gefitinib sensitivity was detected using the mouse xenograft model. RESULTS: CircSETD3 was significantly upregulated in gefitinib-resistant NSCLC cells, and decreased the gefitinib sensitivity in vitro and in vivo. Mechanically, circSETD3 facilitated FXR1 binding to its downstream mRNA target, epithelial cell-transforming sequence 2 (ECT2), promoting ECT2 mRNA decay, which further inhibited cellular apoptosis. CONCLUSION: CircSETD3/FXR1/ECT2 axis plays a critical role in the acquired resistance to gefitinib in NSCLC. Our results highlight the potential of circSETD3 as a biomarker and therapeutic target for NSCLC patients with acquired gefitinib resistance.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Gefitinibe , Neoplasias Pulmonares , RNA Circular , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Células Epiteliais/metabolismo , Receptores ErbB/genética , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a RNA/genética , RNA Circular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...